
Autacoids (part1)

by:

Dr Soodeh Tavakoli

DVM-PhD Candidate in pharmacology

Soodeh.tavakoli@ut.ac.ir

Definition

Autos - acos

Autacoids are chemical mediators that are synthesized and function in a localized tissue or area

participate in physiologic or pathophysiologic responses to injury.

They act only locally "local hormone."

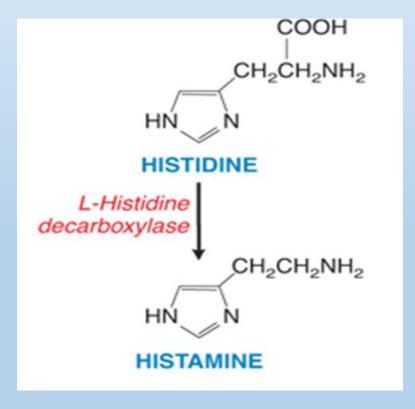
Autacoids normally do not function as the classical blood-borne hormones.

Autacoids are short-lived and rapidly degraded.

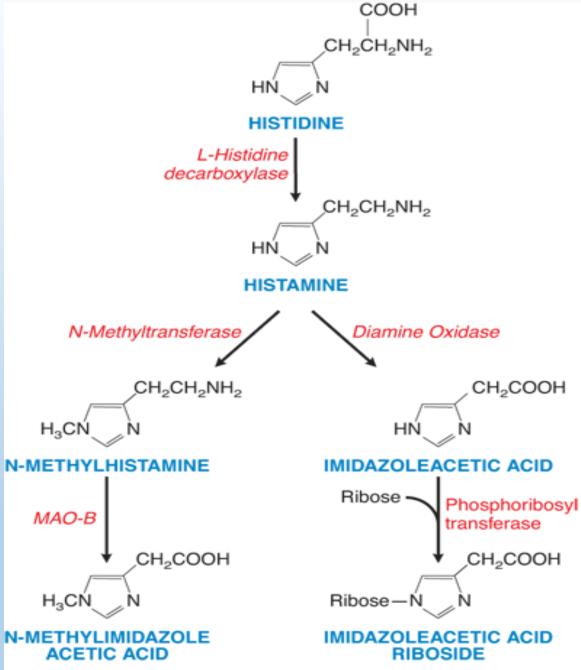
Class	Example	
Biogenic Amines	Histamine Serotonin (5 HT)	
Phospholipids Derived	Prostaglandins (Eicosanoids), leukotriene Thromboxanes, Platelet activating factors (PAF)	es
Polypeptides	Angiotensin and Kinins (Bradykinin and Kallikidin)	

Function

- 1. Autacoids modulate blood flow in specific tissues.
- 2. Some autacoids modulate secretory processes, for example, histamine on gastric acid formation.
- 3. Autacoids modulate smooth muscle function.
- **4.** Autacoids play a key role in allergy, inflammation, smooth muscle function, pain, and certain types of drug reactions (Anaphylaxis).


Anaphylaxis

Histamine


1. Biosynthesis

Dietary histidine is decarboxylated by l-histidine decarboxylase to

form histamine

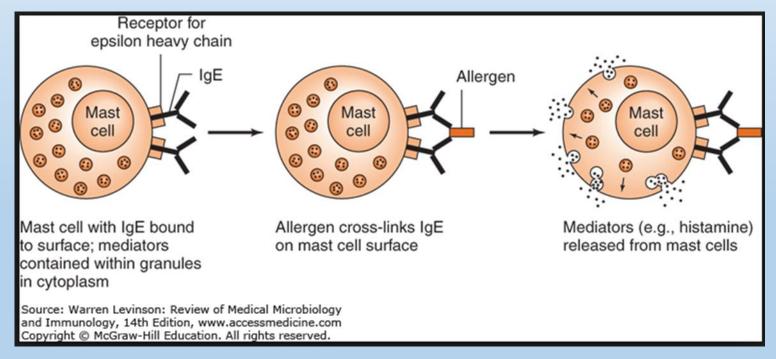
2. Metabolism

Source: L. L. Brunton, B. A. Chabner, B. C. Knollmann: Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 12ed. www.accesspharmacy.com

Copyright @ McGraw-Hill Education. All rights reserved.

3.storage sites

☐ Mast cells in **lungs**, **skin**, mucosal layer of the **stomach**

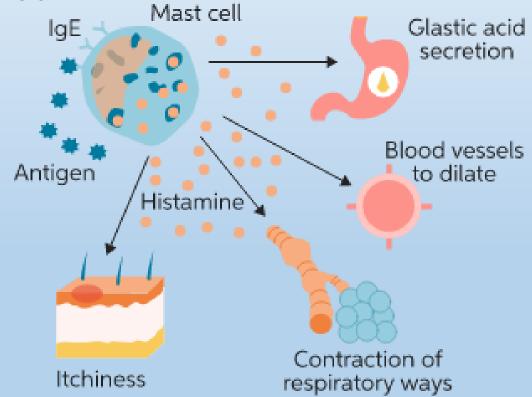

Mast cells are the primary cells that store histamine where it exists in a complex with heparin sulfate and chondroitin sulfate E in storage granules

□ Basophils

□also found in CNS where it act as a neurotransmitter

4. Release

- a. Immune release.
- b. Drug-induced release
- c. Plant and animal stings
- d. Physical injury


5. Physiologic and pathologic roles

a. Gastric acid secretion

b. Allergic reactions and anaphylactic shock

c. Inflammation

d. Neurotransmission

6. Pharmacologic effects

- a. Cardiovascular system
- b. Respiratory system
- c. Glandular tissue
- d. CNS
- e. Intradermal tissue

Antihistamines

Therapeutically useful antihistamine drugs are H₁-antihistamines and H₂ antihistamines

H₁-antihistamine:

first type of antihistaminic drugs

classical antihistaminic

act as competitive antagonists/inverse agonists of histamine receptors

first-generation H₁-antihistamines

diphenhydramine, dimenhydrinate, hydroxyzyline, chlorpheniramine, meclizine, promethazine, and cyproheptadine.

These drugs are unionized drugs at physiological pH and easily cross the blood-brain barrier (BBB). Therefore, they produce CNS side effects, in particular, sedation.

Second-generation H₁-antihistamines

loratadine (Claritin®), cetirizine (Zyrtec®), and fexofenadine (Allegra®)

This class of drugs is ionized at physiological pH and is difficult to cross BBB

Pharmacologic effects of H₁-antihistamines

- (1) Relaxation of contracted bronchiolar smooth muscle.
- (2) Relaxation of contracted intestinal smooth muscle.
- (3) Inhibition of histamine-induced vasodilation and increased capillary permeability and thereby blocking formation of edema and wheals.
- (4) Inhibition of itch sensation by prevention of stimulation of sensory nerves.
 Many H₁-antihistamines have a potent local anesthetic action that may contribute to their inhibition of itching and pain.
- Note: H1-antihistamines alone are not effective for treatment of systemic anaphylaxis because large amount of other autacoids are released during anaphylaxis.

- **Sedation** is a common effect of first-generation H_1 -antihistamines but sedation does not correlate with their potency for inhibiting H_1 -receptors. Sedation may be a desirable/undesirable effect and can be expected to be additive to other CNS depressants.
- Antimuscarinic effects are prominent for some H₁-antihistamines, for example, diphenhydramine and promethazine, which decrease secretions and relax smooth muscles.
- Antimotion sickness (antiemetic) effects. This effect is due to the inhibition of histaminergic signals from the vestibular nucleus to the vomiting center in the medulla. All H₁-antihistamine have this effect, but some of them (diphenhydramine, dimenhydrinate, and meclizine) have more potent antimotion sickness effect than others in the group.

Adverse effects

- (1) <u>CNS depression</u> (lethargy, somnolence, ataxia) are the most common but they may diminish with time. The performance of working dogs may be adversely affected.
- (2) Antimuscarinic effects (dry mouth, urinary retention) occur with many H₁-antihistaqmines. They should be used with caution in patients with angle closure glaucoma.
- (3) In high doses <u>CNS stimulation</u> is possible, for example, pyrilamine in the horse.
- (4) Some individuals could <u>develop allergy</u> to the use of H₁-antihsitamines.
- (5) Drug tolerance

H₂-antihistamines

H₂-antihistamines contain imidazole ring with uncharged side chains and are smaller than H₁-antihistamines

These drugs are inhibitors of gastric acid secretion.

They have little action on H₁-receptors.

- cimetidine
- ranitidine
- nizatidine
- famotidine

- **Pharmacologic effects**. H₂-antihistamines competitively inhibits histamine (H₂-receptors) in parietal cell and thereby decreases gastric acid production during basal conditions and when stimulated by food, vagal activity, pentagastrin, gastrin, or histamine.
- Therapeutic uses. H₂-antihistamines are administered orally to treat gastric, abomasal and duodenal ulcers, drug-induced erosive gastritis, duodenal gastric reflux, and esophageal reflux.
- ❖ Cimetidine is least potent among the four H₂-antihistamines. Lack of therapeutic effect of cimetidine has been reported in dogs.
- Cimetidine can inhibit the hepatic cytochrome P450 enzymes. It may reduce the metabolism of other drugs, which undergo hepatic metabolism, thereby elevating and prolonging their concentration in the plasma

Cromolyn sodium

inhibits the release of histamine and other autacoids from mast cells.

It **does not** inhibit H_1 — and H_2 -receptors, but opens chloride channel to hyperpolarize the cells

- (1) It is primarily used to treat pulmonary and nasal allergic reactions
- (2) It is not well absorbed from the gut and has no clinical use when given orally.
- (3) It is used in a prophylactic manner.
- (4) It has been used in the horse where it is nebulized and delivered via a face mask.
- (5) The 4% eye drop is used to control allergic conjunctivitis.

Histamine

